Электрон (элементарная частица). Из чего состоит электрон? Масса и заряд электрона Масса и заряд электрона

В. Н. Гуськов.

Свойства характеризуют содержание физического объекта (ФО) в его взаимодействиях с окружающим миром.
Из этого следует, что сами по себе свойства нельзя рассматривать непосредственно как материальное содержания объекта. Свойства реальны только потому, что реально содержание ФО. Они полностью зависимы от содержания объектов и проявляются в их взаимодействиях с внешним миром. Поэтому всевозможные физические константы конкретных свойств ФО являются по существу показателями неизменности материального содержания объекта.

Масса электрона.

Масса согласно Ньютону – это внутренняя характеристика ФО, мера его инертности (инерции).
В физике считается, что инертность объекта проявляется в его способности противостоять изменениям, внешним воздействиям. Однако с позиций концепции непосредственного близкодействия (КНБ) способностью противостоять изменениям обладают все ФО участвующие в преобразующих взаимодействиях независимо от наличия у них свойства массы.
Любой ФО будет противостоять изменениям собственного содержания, своего внутреннего движения. Это свойственно и энергетическим объектам – фотонам, которые массой не обладают (по крайней мере, в виде скалярной величины).
С позиций КНБ наличие у ФО массы определяется его способностью не противостоять изменениям вообще или сохранять свою структуру, свою внутреннюю организацию, а противостоять изменению своей связи с конкретной материальной субстанцией в которой эта структура и реализуется как ФО.
Эта способность иметь массу противоположна способности энергетических ФО сохранять свою индивидуальность только через непрерывную смену материального субстрата с которым связана его структура и содержание.
Именно объединение этих противоположных способностей в одном целом (в системе) приводит ФО обладающий массой в пространственное перемещение, а ФО обладающий энергией к торможению, замедлению его перемещения в материальном пространстве. Такой комбинированный ФО (ЭЗСМ) состоящий из ЭСМ и ЗСМ никогда и ни при каких условиях не может пространственно покоиться или перемещаться в нем со скоростью света.

Естественно что как способность иметь массу так и способность иметь энергию строго связана со структурной организацией ФО.
Как только структура ФО имеющих массу, например электрона и позитрона, при аннигиляции разрушается, то вновь образованные структуры теряют способность иметь массу. Они становятся структурно иными объектами – фотонами. Которые теряя связь с конкретной материальной субстанцией в своем существовании приобретают энергетические характеристики.
Казалось бы, из этого можно сделать вывод, что все изменения, не приводящие к необратимым последствиям для объекта, имеющего массу и в частности для электрона, имеют второстепенное значение. Однако это не так.
Любые преобразующие взаимодействия с внешним миром приводят к трансформации зарядового движения в структуре электрона. (Собственно говоря, ничего другого в содержании электрона кроме этого движения и нет.).
Но структура электрона, несмотря на свою простоту такова, что, преобразования структурообразующих движений всегда обратимы. В результате этого сохраняется и общее количество зарядового движения в электроне.
А это обеспечивает не только сохранность его структуры, но и постоянство его свойств, в том числе и массы.
С другой стороны постоянство содержания позволяет электрону даже в случае вхождения его в состав более сложного образования сохранять (отчасти) свою индивидуальность и всегда становиться прежним ФО после выхода из системы.

Способностью иметь массу обладают исключительно ЗСМ (в том числе и электрон), а также все более сложные ФО, в состав которых они входят. Материя, находящаяся в основном состоянии или в энергетическом состоянии таким свойством не обладает.

Однако постоянство массы не обеспечивает электрону способность проявлять это свойство в полной мере в любой момент свого существования.
Из предыдущей статьи видно, что содержание электрона от фазы к фазе меняет направленность проявления своего содержания (свой внутренний импульс). А поскольку структурообразующие взаимодействия, происходящие в электроне протекают со скоростью света, то и электрон, находящийся в фазе «сходящихся» полуквантов будет представлять собой своего рода «уходящий » объект.
Это значит, что любые попытки вступить с ним в преобразующее взаимодействие в этот момент ни к чему не приведут. Он будет недоступен для взаимодействия, поскольку будет уходить от любых противостояний с внешним миром. (Точно также недоступен, но только всегда(!), фотон для положительно ускоряющих его взаимодействий в плоскости распространения.)
Несовместимость электрона с чем-либо внешним, а, следовательно, и преобразование, в этой фазе существования невозможна. Спрашивается – может ли электрон в таком состоянии проявить свое свойство массы в отношениях с окружающим миром? Очевидно, нет.
И это при наличии у электрона полноценного содержания, которое количественно ничем не отличается от его содержания в фазе «расходящихся» полуквантов.

Электрический заряд электрона.

Внешнее проявление электрического заряда электрона отличается большим разнообразием, чем проявление его свойства массы. И действительно в одних взаимодействиях с тождественными по знаку заряда объектами электрон «отталкивается» от них, а в других с объектами, имеющими противоположный знак заряда он напротив «притягивается».
Эта неоднозначность внешнего проявления заряда электрона позволяет утверждать, что результат всегда зависит от содержания и свойств обоих взаимодействующих объектов.

Однако сама по себе констатация наглядных фактов «притяжения» или «отталкивания» объектов в зависимости от их знаковой принадлежности позволяет определить только внешние признаки внутренних закономерностей процесса и вывести соответствующие им математические закономерности (закон Кулона, например). Но для того чтобы понять, почему проявление зарядового свойства электрона столь различно, и каковы принципы его реализации этого будет явно недостаточно.

Чтобы понять суть происходящего во взаимодействиях объектов имеющих электрические заряды мы вынуждены несколько отступить от темы разговора. Структура электрона, как и структура любого другого ФО существует в «среде» ОСМ. Поэтому очень важно знать, как устроен элемент ОСМ.
В предыдущей статье уже отмечалось, что разнознаковые полукванты входящие в состав элемента ОСМ должны компенсировать проявление друг друга, чтобы объект приобрел истинную (в том числе и электрическую) нейтральность. Это значит что «уравновешивают» друг друга в своем противостоянии не только встречно направленные полукванты одного вида, но и однонаправленные полукванты разных видов. Это значит, что связь между полуквантами в элементе ОСМ разнообразна и многогранна.
По существу разделять полукванты в элементе ОСМ по знаковому признаку как мы это делали (значительно упрощая действительность) при анализе структуры электрона здесь не получится. Реальная связь между полуквантами в ОСМ такова, что они буквально не могут существовать друг без друга. Они представляют собой одно целое, стороны одной действительности. При этом ни одно из таких совокупных взаимодействий, в которых участвуют полукванты ОСМ нельзя однозначно рассматривать как, безусловно, внутреннее или внешнее. (Что вполне допустимо в случае со структурой электрона.). Они абсолютно идентичны. Поэтому определение их статуса абсолютно субъективно т. к. решающую роль будет иметь позиция наблюдателя (субъекта).
Любое взаимодействие можно рассматривать как центральное и структурообразующее и вместе с тем как внешнее с другими элементами ОСМ.
Поэтому есть все основания считать структуру ОСМ непрерывной, состоящей из своего рода «узелков» в качестве которых выступают взаимодействия. Эти взаимодействия материи находящейся в основном состоянии однотипны по принципам внутренней организации, материальному содержанию и поэтому не имеют отличительных признаков.

Конечно, все вышеизложенное о предполагаемой структуре ОСМ может быть интересно для читателя. Но для нас сейчас важно только одна деталь — зависимость интенсивности проявления одного вида полуквантов ОСМ от наличия нейтрализующих это проявление однонаправленных с ними полуквантов другого вида. Что все это значит? Только одно – если разнознаковые однонаправленные полукванты равны, то они полностью нейтрализуют друг друга. Если же один вид полуквантов начинает доминировать, то образуется зарядовое движение что мы и наблюдаем в электроне.

«Отталкивание» электронов.

Фактор доминирования одного вида полуквантов над другим очень важен для объяснения принципа организации внутреннего движения в электроне.
Не менее важен он и для объяснения механизма взаимодействия между ЗСМ. Например, между двумя электронами. Зная организацию внутреннего движения в электроне не трудно понять, что произойдет с ним, когда на смену его нейтрального взаимодействия с ОСМ придет взаимодействие с тождественным по знаку ЗСМ.
Их несовместимость приведет к точно такому же преобразовательному взаимодействию, что было у них до этого с ОСМ. И результат его будет таким же – преобразование импульса взаимодействующих полуквантов.
Единственное отличие будет состоять в том, что это взаимодействие будет «преждевременным» и произойдет оно на меньшем удалении от месторасположения предшествующих центральных взаимодействий в ЗСМ.
Следовательно, в зоне контакта электронов трансформация зарядового движения наступит раньше, чем с противоположной стороны (в зоне их взаимодействий с ОСМ). В результате произойдет смещение последующего центрального преобразовательного взаимодействия в каждом из электронов.
Не трудно догадаться – в каком именно направлении произойдет это смещение – в направлении друг от друга. Также не сложно понять, что данное смещение центров электронов равнозначно перемещению их друг от друга в пространстве.
Таков механизм «отталкивания» тождественных ЗСМ , в данном случае двух электронов. Как видим, он прост и не требует привнесения в содержание ЗС для его реализации никаких дополнительных сущностей.
Конечно, здесь дана упрощенная трактовка процесса «отталкивания» без учета энергетической составляющей. Но что самое главное — без учета взаимодействия с ОСМ.

«Притяжение» электрона и позитрона.

Посмотрим теперь, нуждаются ли электрически разнознаковые ЗСМ (электрон и позитрон) в каких-либо связующих «веревочках» для реализации «притяжения» или передачи энергетических импульсов.
Как уже отмечалось однонаправленные разнознаковые полукванты в ОСМ практически полностью нейтрализуют друг друга. Связь между полуквантами сохраняется и при переходе ОСМ в зарядовое состояние.
Только в результате нарушения количественного равновесия между полуквантами исчезает и нейтральность присущая им в ОСМ. Один вид полуквантов становится доминирующим, а что происходит с другим? Очевидно, его нейтрализация еще больше усиливается .
Естественно эти изменения не могут не проявиться во взаимодействии разнознаковых ЗСМ. И если во взаимодействии тождественных ЗСМ преобразование преобладающего вида полуквантов наступает раньше чем при аналогичном взаимодействии этих ЗС с ОСМ, то при взаимодействии разнознаковых ЗС будет наблюдаться обратный эффект .
Преобразующее взаимодействие в зоне их контакта будет запаздывать относительно аналогичного взаимодействия с ОСМ. Соответственно произойдет смещение последующих центральных взаимодействий в каждом из ЗСМ в направлении друг к другу. А это значит, что объекты должны пространственно переместиться в направлении друг к другу.
Перемещение объектов действительно произойдет, но только не друг к другу, а друг В друга! Данное уточнение основано на положении КНБ о неизбежности непосредственного контакта при возникновении взаимодействия между ФО.
Следовательно, если уже взаимодействующие объекты перемещаются встречно, то это может означать только одно – их пространственное совмещение , а не формальное сближение.
Неверным было бы считать, что вследствие совмещения разнознаковых объектов может произойти какое-то «удвоение» действительности. Ничего подобного — совмещаемые объекты прекрасно дополняют друг друга, но материальная основа их существования (ОСМ) будет оставаться прежней. Пространственно совместимы структуры ЗСМ, но не материя . И чем глубже будет их взаимопроникновение, тем меньше будет противостояние структур (до момента возможной их аннигиляции).
Таким образом, мы видим, что для реализации «притяжения» нет никакой необходимости в связующих нитях, посредством которых объекты могли бы притянуть друг друга. Нет необходимости и в противоестественной (обратной по преобразовательной сути «отталкиванию») и, следовательно, алогичной передаче энергетического движения посредством виртуальных фотонов. В основе процесса «притяжения» лежит тот же самый механизм преобразовательного взаимодействия (а точнее совокупности взаимодействий) что и в основе «отталкивания».

Однако объяснение механизмов как «отталкивания» так и «притяжения» будет будет неполным без учета взаимодействий объектов не только между собой, но и с ОСМ в противоположных направлениях. Эти взаимодействия присутствуют всегда, но только при наличии зарядовых взаимодействий начинает проявляться их роль как движущих факторов.
Так при «отталкивании» величина противостояния в этих взаимодействиях оказывается меньше чем величина противостояния электронов, а при «притяжении» эта же величина будет больше противостояния электрона и позитрона. В результате ФО начинают смещаться по линии наименьшего сопротивления в первом случае друг от друга, во втором — друг в друга.
Результат относительного ослабления противостояния разнознаковых ФО в их взаимодействии наглядно можно представить как процесс «проваливания» их друг в друга или «вдавливания» друг в друга внешним взаимодействием с окружающим ОСМ. Но эти наглядные образы не совсем верно отражают суть происходящего. В них не находит отражение многоплановость причин происходящего. Ведь фактически «притяжение» объектов (как впрочем, и «отталкивание») это результат не одного и даже не двух конкретных взаимодействий, а комплекса всесторонних взаимодействий ФО с окружающей их материей.

Предварительные итоги.

Благодаря практически полной взаимной и всесторонней компенсации полуквантов среда ОСМ электрически нейтральна. Однако достаточно через преобразование усилить или ослабить одну из содержательных составляющих (один вид полуквантов) ОСМ как равновесие нарушается, и оно переходит в ЗСМ.
Естественно это выражается не только в усилении проявления преобладающего вида полуквантов, но и ослаблении однонаправленного с ним противоположного вида полуквантов.
В электрическом заряде электрона находит выражение его способность вступать во внешние преобразующие взаимодействия с разной степенью активности.
Проявление этого свойства непосредственно связано со свойствами другого взаимодействующего с ним ФО. При этом содержание взаимодействующих сторон может проявлять себя по разному. Поэтому зарядовое свойство можно определить как взаимное изменение интенсивности проявления отдельных сторон содержания ФО при их взаимодействии.
Ничего таинственного в реализации «отталкивания» и «притяжения» электрически заряженных элементарных ФО нет.
В природе на элементарном уровне сами эти явления как таковые отсутствуют — это только внешнее проявление глубинных процессов. В основе которых лежит преобразующее взаимодействие несовместимых сторон. Поэтому принципиально механизм реализации «отталкивания и «притяжения» ничем не отличим. Единственное различие заключается в степени противостояния объектов, в величине их несовместимости.

«Спин» электрона.

Если исходить из положения о тождественности всех электронов то, рассуждая строго логично, следует признать что никакого свойства, которое позволяло бы разделить все электроны на два типа не может быть.
И действительно, поскольку свойства характеризуют содержание объекта, то отличие в чем-то свойств электронов будет свидетельствовать об их содержательном различии. Это противоречит положению о полной тождественности всех электронов.
С позиций КНБ структура электрона абсолютно прозрачна и обнаружить в ней «нечто» что могло бы послужить основанием для предположения о структурном или содержательном различии электронов (по крайней мере, на данном уровне развития наших представлений о нем) не удастся.
Поэтому есть все основания утверждать об отсутствии у электронов свойств, которые позволяли бы разделить их на отдельные группы. Следовательно, и «спин» как свойство у всех электронов должен быть одинаковый.
С другой стороны тождественность структур всех электронов не мешает им вступать во взаимодействие между собой находясь в разных фазах своего внутреннего существования. Именно наличие внутренней «пульсации» содержания ЗС позволяет разрешить, казалось бы, неразрешимую дилемму с различными «спинами» у электронов.
Наличие двух фаз во внутренних преобразовательных процессах ЗС вносит разнообразие в их отношения. Обобщая возможные варианты развития событий при взаимодействии ЗС, выделим две противоположные ситуации.
Первая – фазы существования взаимодействующих ЗС совпадают.
Вторая – структурообразующие движения во взаимодействующих ЗС находятся в противофазе.
Оба варианта взаимодействий приведут к одному и тому же результату – «отталкиванию», но в деталях они будут отличаться. Наименее противоречивым (до определенного момента) будет отношение между ЗС, чьи внутренние зарядовые движения находятся в противофазе. Поэтому сближение таких объектов будет максимально возможным.
При совпадении фаз существования взаимодействующих электронов их противостояние будет наоборот максимальным. Поэтому при прочих равных условиях их сближение в сравнении с первой ситуацией будет минимальным.
Очевидно, это различие в результатах взаимодействий между электронами и позволяет утверждать о наличии у них разных спинов.
Вывод — «спин» является сравнительной характеристикой взаимодействующих объектов. Спин отдельного электрона теряет свою определенность.
Сказать заранее до взаимодействия какой конкретно у электрона «спин» нельзя. Можно считать, что его просто нет.
Непонимание фактора зависимости, подчиненности свойств материальному содержанию объекта может привести к серьезным трудностям в формировании представлений о ФО. Наличие у ФО каких-либо характеристик (массы, энергии, заряда), тем более, если они имеют константную величину, часто ассоциируется в сознании субъекта с самим материальным содержанием объекта. Якобы свойства присутствуют в нем.
Свойства воспринимаются как дополнительные сущности, которые имеются у объекта кроме его материального содержания или входящие в состав его материального содержания в качестве отдельных элементов.
Однако это не так, свойства могут проявляться с различной интенсивностью (в зависимости от характера взаимодействия), а порой и полностью исчезать с прекращением соответствующих взаимодействий. Содержание объекта при этом, по крайней мере, количественно может оставаться неизменным.
Вывод – «ареал обитания», область существования свойств это всегда процесс взаимодействия, вне его свойства не могут ничем и ни в чем себя проявить. Фактически свойства, которые мы считаем характеристикой отдельного объекта, являются показателем процесса взаимодействия, а подчас и целой совокупности взаимодействий.

Дуализм свойств электрона.

Прежде чем перейти непосредственно к «дуализму» свойств электрона рассмотрим некоторые стороны отношений электрона с фотоном.
В предыдущей статье уже отмечалось отсутствие энергетического движения в структуре электрона. Это дает основания для утверждения об отсутствии у электрона и способности обладать энергией. (Здесь энергия рассматривается как свойство присущее исключительно энергетическим объектам – фотонам).
Вообще понятие энергии в физике имеет двойной смысл.
С одной стороны оно отожествляется с энергетическим содержанием самого объекта. С другой, энергия рассматривается как свойство того же самого объекта.
Без сомнений подобное объединение ничем не может быть оправдано. Здесь надо определяться: либо энергия это содержание ФО, либо его свойство – третьего не дано.
С точки зрения автора энергия – это свойство энергетического объекта , а не его содержание. Поэтому излучать или поглощать непосредственно энергию ФО не может. Он может только проявлять свою энергичность.
Конечно, энергию, как и любое другое свойство можно потерять или приобрести, но только через преобразование материального содержания объекта, его количественное изменение.
Без физического процесса перемещение свойства «энергия» невозможно. Поэтому когда говорят об излучении или поглощении энергии обычно имеется в виду количественное изменение материального содержание объекта, которому присуще энергетическое движение.
По существу для организации внутреннего движения электрона в энергии нет никакой необходимости. А вот для проявления свойств электрона энергетическое движение и, следовательно, энергия необходимы.
Достичь этого не сложно – достаточно электрону объединиться с фотоном. Однако здесь есть одна тонкость – «приобретая» энергетическое движение электрон перестает быть самим собой и, следовательно, утрачивает свои изначальные свойства.
Несмотря на то, что в физике пространственно перемещающийся электрон рассматривается как электрон «обладающий» энергией на самом деле это не электрон, а новый ФО.
Электрон входит в состав этого объекта в качестве элемента. Поэтому фактически электрон, объединившись с фотоном, не только не приобретает новые свойства, но и теряет свойства присущие ему изначально. Это происходит всегда и со всеми ФО, которые посредством взаимодействия образуют новое целое – систему. Ни содержание элементов системы, ни их свойства не сохраняют автономность.
Это значит, что объединенные свойства не суммируются, а трансформируются в новые совокупные свойства присущие системе как целому. Таким образом, новый ФО приобретает не только энергию присущую фотону, но и массу, и заряд электрона. Образуется новый ФО, который условно можно назвать «фотоно-электроном» или энергозарядовым состоянием (ЭЗС). Этот ФО будет обладать соответствующими ему (и только ему!) объединенными свойствами, в том числе и «энергомассой».

Вывод – при образовании системы: электрон + фотон прежние свойства элементов системы не сохраняются. Поэтому выражение «движущийся электрон» также безграмотно, как и выражение «покоящийся фотон».
Таких объектов в природе не существует, если только мы не понимаем под ними систему (ЭЗС) с присущей этой системе свойством «энергомассой».

Анализируя структуру и свойства электрона, мы рассматривали электрон, так сказать в «чистом» виде. Электрон как ФО, который участвует во внешних взаимодействиях (без этого он не может существовать!), но не входит в состав более крупной физической организации, системы.
Данный подход вызван необходимостью рассмотреть не свойства какой-то системы, а свойства конкретного элементарного объекта – электрона. Понятно, что для возникновения взаимодействия электрона с любым объектом (кроме ОСМ) и, следовательно, для проявления свойств необходимо пространственное перемещение хотя бы одного из них. Это значит что наличие энергетического движения у взаимодействующих объектов обязательно. Однако, упрощая ситуацию, мы игнорируем этот факт, абстрагируемся от него.

Перейдем к рассмотрению непосредственно «дуализма» свойств электрона.
Анализ организации внутризарядового движения электрона показал, что в течение одного периода своего существования он испытывает удивительные метаморфозы. Казалось бы, соответственно должны изменяться и свойства электрона.
Однако, несмотря на своеобразную «двуликость» содержания электрона никакими исключающими друг друга свойствами он не обладает. Противопоставление электрона как «частицы» и как «волны» чисто условно. Хотя бы, потому что его содержание качественно и количественно в моменты проявление этих «свойств» остается неизменным, а сами изменения содержания электрона последовательны во времени.
Поэтому в дальнейшем будет говорить только об изменчивости свойств электрона в процессе его существования, а не об их двойственности.

Как уже отмечалось в предыдущей статье, электрон по своей природе не является волной — он природный гармонический осциллятор. Поэтому наблюдаемые в опытах по «дифракции» и «интерференции» электрона свойство «волны» проявляет на самом деле не электрон, а система: электрон + фотон. Только благодаря постоянной связи с фотоном электрон, в составе нового ФО, приобретает волновые свойства. Значит, если рассуждать строго, следует признать, что «корпускулярно — волновой дуализм» свойств как таковой не присущ электрону.
В дальнейшем речь пойдет о «фотоно-электроне » — системе состоящей из энергетического и зарядового состояний материи, т.е. о энергозарядовом состоянии материи (ЭЗСМ).

Конечно, при анализе опытов с ЭЗСМ подтверждающих их «волновой» характер нужно было бы учитывать все реальные обстоятельства происходящего. В частности то, что в процессе участвует не “однофазовая” абстрактная копия электрона, а объективно существующий “двухфазовый” электрон. Не мешало бы иметь реальные представления о структуре фотона, с которым электрон образует систему, а также иметь более четкие представления о строении мишени. Но, к сожалению, представить во всей полноте происходящее в экспериментах, на основе имеющихся знаний, не удастся. Поэтому ограничимся общими соображениями, основанными на элементарной логике.

Начнем с прохождения ЭЗСМ через две щели. Поскольку никакая мистика в науке неуместна, сразу признаем этот факт. Из этого конечно не следует, что ЭЗС в этот момент состоит из двух половинок. И электрон, и фотон в составе этой системы всегда сохраняют свою целостность.
Итак, в начальный момент прохождения ЭЗСМ в виде движущегося электрона через мишень, очевидно ФО, находится в фазе внешнего зарядообразующего взаимодействия.
Это, кстати, позволяет сделать определенные выводы о размерах ЭЗС в момент наибольшего «расширения» электрона. Они будут сопоставимы с расстоянием между отверстиями в мишени. В дальнейшем продвижении объекта через мишень их структуры должны находиться в состоянии противофаз. Это позволит ЭЗС с наименьшими изменениями достичь другого края мишени.

Результат, который будет наблюдаться на экране, полностью зависит от расстояния от мишени до экрана. Если ФО вступит во взаимодействие с экраном в состоянии совпадающих фаз, то будет наблюдаться пик проявления «энергомассовых» свойств движущегося электрона именно по центру экрана относительно расположения отверстий в мишени. Произойдет отражение ЭЗС от экрана.
Если они вступят в контакт в состоянии противофаз, то ФО проникнет вглубь экрана, и мы ничего не увидим.
При отклонении направления движения ФО от прямолинейного, расстояние до экрана будет меняться. Будет меняться и результат взаимодействий, т.к. ФО будет достигать экрана в разных фазах.
Таким образом, будет создаваться картина аналогичная наблюдаемой при интерференции волн. Однако пусть читатель сам поразмышляет — можно ли данный эффект от взаимодействий движущегося электрона с экраном рассматривать как интерференцию его самого с собой.
Иными словами, нужно выяснить — может ли интерферировать одиночная волна? Учитывая, что согласно положениям классической физики для получения данного эффекта необходимо наложение волн друг на друга.

Для объяснения «дифракции» движущегося электрона при прохождении его через одно отверстие к сказанному мало, что можно добавить.
Логично рассуждая, следует предположить, что в начальный момент прохождения мишени ФО должен находиться в состоянии “частицы”, либо просто в противофазе с состоянием мишени.
При выходе из мишени в случае отклонения движения от прямолинейного ФО совсем не нужно обладать способностью “огибать” препятствие. Ему достаточно быть в противофазе с содержанием мишени, чтобы пройти сквозь нее практически беспрепятственно. Конечно, структура и размеры препятствия должны быть соответствующими частоте колебаний в структуре ФО.

Итоги.

Масса и заряд электрона, наблюдаемые в течение времени значительно превышающего частоту его собственных колебаний выглядят как сохраняющиеся, постоянные величины. Но в течение одного периода колебательных движений в структуре ЗС интенсивность проявления свойств может меняться от максимума, практически до нуля.
Электрон в фазе «сходящихся» полуквантов практически не наблюдаем и не проявляет никаких свойств (за исключением пожалуй заряда).
Все известные физике свойства электрона можно отнести к фазе «расходящихся» полуквантов. В результате отдельная фаза периода существования электрона воспринимается субъектом как полноценный физический объект. Поэтому мы вынуждены при анализе свойств электрона его существование в фазе «расходящихся» полуквантов подразделять на две своего рода «подфазы». В одной из них (на начальной стадии расширения) электрон будет иметь практически «монолитное» строение, представляя собой «частицу». В другой (в максимальной стадии расширения) благодаря неопределенности размеров и «рассеиванию» содержания в пространстве ОСМ электрон предстанет в виде «волны».
Иными словами электрон в начальной стадии расширения предстает для внешнего наблюдателя в виде точечного излучателя движущейся материи , который продуцирует «расходящиеся» полукванты одного вида.
Из-за практической ненаблюдаемости внешнего преобразующего взаимодействия границы электрона в стадии максимального «расширения» становятся призрачными.
Различия между электроном и полем пространственной деформации ОСМ, а также и с собственно содержанием ОСМ стираются. В результате становится абсолютно неясным – откуда «однофазовый» электрон «черпает» зарядовое движение для реализации процесса «излучения» своего материального содержания.
Тем более необъяснимо появление энергии, которой у «покоящегося» электрона нет, (и не может быть в принципе) но, которую, согласно существующей физической теории, электрон должен безвозвратно излучать в окружающее пространство. (Здесь под «энергией» подразумевается энергетическое содержание фотона.)

В связи с таким односторонним восприятием структуры электрона возникает ряд проблем в современной теоретической физике.
В частности представления о природе электрона основанные на математических моделях, которые появляются вследствие обобщения всего лишь наглядного, внешнего проявления одной стороны содержания электрона алогичны по своей сути.
Они требуют отказаться от норм формальной логики, мыслить не просто оригинально, а «нетрадиционно».
Ни к чему кроме как к увеличению количества пациентов психиатрических клиник это привести не может. Поскольку представить ФО который одновременно является и волной и частицей никакой здравомыслящий субъект не в состоянии.

В самих математических моделях призванных описывать явления природы в соответствии с оригиналом появляются несоразмерности и бесконечности по целому ряду величин (в том числе и по массе, заряду, размерам и энергии). В борьбе с этими «расходимостями» применяются хитроумные способы (в частности теория перенормировок), призванные подогнать теорию под экспериментальные данные.
Это напоминает чем-то попытки школьника младших классов решить математическую задачу любым способом, после того как он узнал ответ в конце учебника.
Все эти «сложности» вполне объяснимы т.к. теоретическая физика вынуждена объяснять явления, которые в принципе не объяснимы с позиций современной теории.

Скорее всего, физическая действительность богаче и разнообразнее наших самых буйных фантазий и свойства материи даже на элементарном уровне (в особенности ОСМ) многогранны и неисчерпаемы.
Вероятно не только электрон во всей полноте своего структурного содержания, но и многое другое из реалий физического мира ускользает от нашего внимания. Но уже сейчас можно сказать, что ничего мистического или исключительно непознаваемого в явлениях микромира нет.

Электроном является элементарная частица, являющаяся одной из главных единиц в структуре вещества. Заряд электрона отрицательный. Самый точные измерения были сделаны в начале двадцатого века Милликеном и Иоффе.

Заряд электрона равен минус 1,602176487 (40)*10 -1 9 Кл.

Через эту величину измеряется электрический заряд других мельчайших частиц.

Общее понятие об электроне

В физике элементарных частиц говорится, что электрон — неделимый и не обладающий структурой. Он задействован в электромагнитных и гравитационных процессах, принадлежит к лептоновой группе, так же как и его античастица — позитрон. Среди других лептонов обладает самым легким весом. Если электроны и позитроны сталкиваются, это приводит к их аннигиляции. Подобная пара может возникнуть из гамма-кванта частиц.

До того как измерили нейтрино, именно электрон считался самой легкой частицей. В квантовой механике его относят к фермионам. Также электрон имеет магнитный момент. Если к нему относят и позитрон, то разделяют позитрон как положительно заряженную частицу, а электрон называют негатроном, как частицу с отрицательным зарядом.

Отдельные свойства электронов

Электроны относят к первому поколению лептонов, со свойствами частиц и волн. Каждый из них наделен состоянием кванта, которое определяют в результате измерения энергии, спиновой ориентации и других параметров. Принадлежность к фермионам у него раскрывается через невозможность нахождения в одном состоянии кванта одновременно двух электронов (по принципу Паули).

Его изучают так же, как квазичастицу в периодическом кристаллическом потенциале, у которой эффективная масса способна существенно отличаться от массы в состоянии покоя.

Посредством движения электронов происходит электрический ток, магнетизм и термо ЭДС. Заряд электрона в движении образует магнитное поле. Однако внешнее магнитное поле отклоняет частицу от прямого направления. При ускорении электрон приобретает способность поглощения или излучения энергии в качестве фотона. Из его множества состоят электронные атомические оболочки, число и положение которых определяют химические свойства.

Атомическая масса в основном состоит из ядерных протонов и нейтронов, в то время как масса электронов состовляет порядка 0,06 % от всего атомного веса. Электрическая сила Кулона является одной из главных сил, способных удерживать электрон рядом с ядром. Но когда из атомов создаются молекулы и возникают химические связи, электроны перераспределяются в новом образованном пространстве.

В появлении электронов участвуют нуклоны и адроны. Изотопы с радиоактивными свойствами способны излучать электроны. В условиях лабораторий эти частицы могут изучаться в специальных приборах, а например, телескопы могут детектировать от них излучения в плазменных облаках.

Открытие

Электрон открыли немецкие физики в девятнадцатом веке, когда изучали катодные свойства лучей. Затем другие ученые стали более детально изучать его, выводя в ранг отдельной частицы. Изучалось излучение и другие связанные физические явления.

К примеру, группа во главе с Томсоном оценила заряд электрона и массу катодных лучей, отношения которых, как она выяснили, не зависят от материального источника.
А Беккерель выяснил, что минералы излучают радиацию сами по себе, а их бета-лучи способны отклоняться посредством воздействия электрического поля, причем у массы и заряда сохранялось то же отношение, что и у катодных лучей.

Атомная теория

Согласно этой теории, атом состоит из ядра и электронов вокруг него, расположенных в виде облака. Они находятся в неких квантованных состояниях энергии, изменение которых сопровождается процессом поглощения или излучения фотонов.

Квантовая механика

В начале двадцатого века была сформулирована гипотеза, согласно которой материальные частицы имеют свойства как собственно частиц, так и волн. Также и свет способен проявляться в виде волны (ее называют волной де Бройля) и частиц (фотонов).

В результате было сформулировано знаменитое уравнение Шредингера, где описывалось распространение электронных волн. Этот подход и назвали квантовой механикой. При помощи него вычисляли электронные состояния энергии в атоме водорода.

Фундаментальные и квантовые свойства электрона

Частица проявляет фундаментальные и квантовые свойства.

К фундаментальным относятся масса (9,109*10 -31 килограмм), элементарный электрический заряд (то есть минимальная порция заряда). Согласно тем измерениям, что проведены до настоящего времени, у электрона не обнаруживается никаких элементов, способных выявить его субструктуру. Но некоторые ученые придерживаются мнения, что он является точечной заряженной частицей. Как указано в начале статьи, электронный электрический заряд - это -1,602*10 -19 Кл.

Являясь частицей, электрон одновременно может быть волной. Эксперимент с двумя щелями подтверждает возможность его одновременного прохождения через обе из них. Это вступает в противоречие со свойствами частицы, где каждый раз возможно прохождение только через одну щель.

Считается, что электроны имеют одинаковые физические свойства. Поэтому их перестановка, с точки зрения квантовой механики, не ведет к изменению системного состояния. Волновая функция электронов является антисимметричной. Поэтому ее решения обращаются в нуль тогда, когда одинаковые электроны попадают в одно квантовое состояние (принцип Паули).

Электрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", под названием "Электрон в полевой теории", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

    1 Радиус электрона
    2 Электрическое поле электрона
    3 Магнитный момент электрона
    4 Масса покоя электрона
    5 Новая физика: Электрон (элементарная частица) - итог

Электрон (англ. Electron) - легчайшая элементарная частица, обладающая электрическим зарядом. Квантовое число L=1/2 (спин = 1/2) - группа лептоны, подгруппа электрона, электрический заряд -e (систематизация по полевой теории элементарных частиц). Стабильность электрона обусловлена наличием электрического заряда, при отсутствии которого электрон бы распадался аналогично мюонному нейтрино.

Согласно полевой теории элементарных частиц, электрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей.

Структура электромагнитного поля электрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,75%,
  • постоянное магнитное поле (H) - 1,8%,
  • переменное электромагнитное поле - 97,45%.

Этим объясняются ярко выраженные волновые свойства электрона и его нежелание участвовать в ядерных взаимодействиях. Структура электрона приведена на рисунке.

1 Радиус электрона

Радиус электрона (расстояние от центра частицы до места в котором достигается максимальная плотность массы) определяемый по формуле:

равен 1,98 ∙10 -11 см.

Занимаемого электроном, определяемый по формуле:

равен 3,96 ∙10 -11 см. К величине r 0~ добавился еще радиус кольцевой области, занимаемой переменным электромагнитным полем электрона. Необходимо помнить, что часть величины массы покоя, сосредоточенной в постоянных (электрическом и магнитном) полях электрона находится за пределами данной области, в соответствии с законами электродинамики.

Электрон больше любого атомного ядра, поэтому не может присутствовать в атомных ядрах, а рождается в процессе распада нейтрона, также как позитрон рождается в процессе распада в ядре протона.

Утверждения о том, что радиус электрона порядка 10 -16 см бездоказательные и противоречат классической электродинамике. При таких линейных размерах электрон должен быть тяжелее протона.

2 Электрическое поле электрона

Электрическое поле электрона состоит из двух областей: внешней области с отрицательным зарядом и внутренней области с положительным зарядом. Размер внутренней области определяется радиусом электрона. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд электрона -e. В основе его квантования лежат геометрия и строение элементарных частиц.

электрического поля электрона в точке (А) в дальней зоне (r > > r e) точно, в системе СИ равен:

электрического поля электрона в дальней зоне (r > > r e) точно, в системе СИ равна:

где n = r/|r| - единичный вектор из центра электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r e =Lħ/(m 0~ c) - радиус электрона в полевой теории, L - главное квантовое число электрона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося электрона, c - скорость света. (В системе СГС отсутствует множитель .)

Данные математические выражения верны для дальней зоны электрического поля электрона: (r>>r e), а голословные утверждения что "электрическое поле электрона остается кулоновским вплоть до расстояний 10 -16 см" не имеет ничего общего с действительностью - это одна из сказок, противоречащая классической электродинамике.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы. А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой.В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков"внутри электрона - лучше если взять 8 "кварков". Понятное дело, что это выходит за рамки стандартной модели.

У электрона, как и у любой другой заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

  • электрический радиус внешнего постоянного электрического поля (заряда -1.25e) - r q- = 3.66 10 -11 см.
  • электрический радиус внутреннего постоянного электрического поля (заряда +0.25e) - r q+ = 3 10 -12 см.

Данные характеристики электрического поля электрона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения, и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля электрона в ближней зоне.

Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

Напряженность E электрического поля электрона в ближней зоне (r ~ r e), в системе СИ, как векторная сумма, приблизительно равна:

где n - =r - /r - единичный вектор из ближней (1) или дальней (2) точки заряда q - электрона в направлении точки наблюдения (А), n + =r + /r - единичный вектор из ближней (1) или дальней (2) точки заряда q + электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до проекции точки наблюдения на плоскость электрона, q - - внешний электрический заряд -1.25e, q + - внутренний электрический заряд +0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости электрона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (q - =-1.25e и q + =+0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Потенциал электрического поля электрона в точке (А) в ближней зоне (r ~ r e), в системе СИ приблизительно равен:

где r 0 - нормировочный параметр, величина которого может отличаться от в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля электрона.

3 Магнитный момент электрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Поскольку величины главного квантового числа L и спина у лептонов совпадают, то могут совпадать и величины магнитных моментов заряженных лептонов у обеих теорий.

Полевая теория элементарных частиц не считает магнитный момент электрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так, основной магнитный момент электрона создается током:

  • (-) с магнитным моментом -0,5 eħ/m 0e c

Для получения результирующего магнитного момента электрона надо умножить на процент энергии переменного электромагнитного поля, разделенный на 100 процентов и добавить спиновую составляющую (смотри Полевая теория элементарных частиц исходник), в результате получим 0,5005786 eħ/m 0e c. Для того чтобы перевести в обычные магнетоны Бора надо полученное число умножить на два.

4 Масса покоя электрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и электрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле.

Как следует из приведенной формулы, величина массы покоя электрона зависит от условий, в которых электрон находится . Так поместив электрон в постоянное внешнее электрическое поле, мы повлияем на E 2 , что отразится на массе частицы. Аналогичная ситуация возникнет при помещении электрона в постоянное магнитное поле.

5 Новая физика: Электрон (элементарная частица) - итог

Перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у электрона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, что линейные размеры электрона значительно превышают линейные размеры протона. Вы увидели, из чего складывается масса покоя электрона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы зависит от полей, в которых находится электрон. Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи .

Владимир Горунович

Электрон. Образование и строение электрона. Магнитный монополь электрона.

(продолжение)


Часть 4. Строение электрона.

4.1. Электрон является двухкомпонентной частицей, которая состоит только из двух сверхуплотнённых (сгущенных, сконцентрированных) полей - электрического поля-минус и магнитного поля-N. При этом:

а) плотность электрона - максимально возможная в Природе;

б) размеры электрона (D = 10 -17 см и менее) - минимальные в Природе;

в) в соответствии с требованием минимизации энергии, все частицы - электроны, позитроны, частицы с дробным зарядом, протоны, нейтроны и пр. обязаны иметь (и имеют) сферическую форму;

г) по неизвестным пока причинам, независимо от величины энергии «родительского» фотона, абсолютно все электроны (и позитроны) рождаются абсолютно идентичными по своим параметрам (например - масса абсолютно всех электронов и позитронов составляет 0,511МэВ).

4.2. «Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды».(с) Это автоматически позволяет сделать однозначный вывод об эквивалентности массы и заряда электрона, то есть: масса электрона является эквивалентом заряда, и наоборот - заряд электрона является эквивалентом массы (для позитрона - аналогично).

4.3. Указанное свойство эквивалентности распространяется также и на частицы с дробными зарядами (+2/3) и (-1/3), которые являются основой кварков. То есть: масса позитрона, электрона и всех дробных частиц является эквивалентом их заряда, и наоборот - заряды этих частиц являются эквивалентом массы. Поэтому удельный заряд электрона, позитрона и всех дробных частиц одинаковый (const) и равен1,76*10 11 Кл/кг.

4.4. Поскольку элементарный квант энергии автоматически является элементарным квантом массы, то масса электрона (с учётом наличия дробных частиц 1/3 и 2/3) должна иметь значения, кратные массам трех отрицательных полуквантов. (См. также «Фотон. Строение фотона. Принцип перемещения. пункт 3.4.)

4.5. Определить внутреннее строение электрона весьма затруднительно по многим причинам, тем не менее, представляет значительный интерес хотя бы в первом приближении рассмотреть влияние двух компонент (электрической и магнитной) на внутреннее строение электрона. См. рис. 7.

Рис.7. Внутреннее строение электрона, варианты:

Вариант №1. Каждая пара лепестков отрицательного полукванта образует «микроэлектроны», которые затем формируют электрон. При этом количество «микроэлектронов» должно быть кратным трём.

Вариант №2. Электрон является двухкомпонентной частицей, которая состоит из двух состыкованных самостоятельных полусферических монополей - электрического(-) и магнитного(N).

Вариант №3. Электрон является двухкомпонентной частицей, которая состоит из двух монополей - электрического и магнитного. При этом магнитный монополь сферической формы расположен в центре электрона.

Вариант №4. Другие варианты.

По-видимому, может быть рассмотрен вариант когда электрические (-) и магнитные поля (N) могут существовать внутри электрона не только в виде компактных монополей, но и в виде однородной субстанции, то есть образуют практически бесструктурную? кристаллическую? гомогенную? частицу. Однако это весьма сомнительно.

4.6. Каждый из предложенных на рассмотрение вариантов имеет свои достоинства и недостатки, например:

а) Варианты №1. Электроны такой конструкции дают возможность спокойно образовывать дробные частицы с массой и зарядом кратным 1/3, но в то же время делают затруднительным объяснение собственного магнитного поля электрона.

б) Вариант №2. Этот электрон при движении вокруг ядра атома постоянно ориентирован на ядро своим электрическим монополем и поэтому может иметь только два варианта вращения вокруг своей оси - по часовой стрелке или против (запрет Паули?) и т.д.

4.7. При рассмотрении указанных (или вновь предложенных) вариантов в обязательном порядке необходимо учитывать реально существующие свойства и характеристики электрона, а также учитывать ряд обязательных требований, например:

Наличие электрического поля (заряда);

Наличие магнитного поля;

Эквивалентность некоторых параметров, например: масса электрона эквивалентна его заряду и наоборот;

Возможность образовывать дробные частицы массой и зарядом кратным 1/3;

Наличие набора квантовых чисел, спина и др.

4.8. Электрон появился как двухкомпонентная частица, у которой одна половина (1/2) является уплотнённым электрическим полем-минус (электрическим монополем-минус), а вторая половина (1/2) является уплотнённым магнитным полем (магнитным монополем-N). Однако при этом следует иметь в виду, что:

Электрические и магнитные поля при определённых условиях могут порождать друг друга (превращаться друг в друга);

Электрон не может быть однокомпонентной частицей и состоять на 100% из поля-минус, поскольку однозарядное поле-минус будет распадаться из-за сил отталкивания. Именно поэтому внутри электрона необходимо наличие магнитной компоненты.

4.9. К сожалению, провести полный анализ всех достоинств и недостатков предложенных вариантов и выбрать единственно правильный вариант внутреннего строения электрона в данной работе не представляется возможным.

Часть 5. «Волновые свойства электрона».

5.1. «К концу 1924г. точка зрения, согласно которой электромагнитное излучение ведет себя отчасти подобно волнам, а отчасти подобно частицам, стала общепринятой...И именно в это время француза Луи де Бройля, который в то время был аспирантом, осенила гениальная мысль: почему то же самое не может быть для вещества? Луи де Бройль проделал по отношению к частицам работу, обратную той, которую Эйнштейн провел для волн света. Эйнштейн связал электромагнитные волны с частицами света; де Бройль связал движение частиц с распространением волн, которые он назвал волнами материи. Гипотеза де Бройля основывалась на сходстве уравнений, описывающих поведение лучей света и частиц вещества, и носила исключительно теоретический характер. Для ее подтверждения или опровержения требовались экспериментальные факты».(с)

5.2. «В 1927 году американские физики К.Дэвиссон и К.Джермер обнаружили, что при «отражении» электронов от поверхности кристалла никеля при определённых углах отражения возникают максимумы. Аналогичные данные (возникновение максимумов) уже имелись по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому появление этих максимумов у отражённых пучков электронов не могло быть объяснено никаким другим путём, кроме как на основе представлений о волнах и их дифракции.Таким образом, волновые свойства частиц — электронов (и гипотеза де Бройля) были доказаны экспериментом».(с)

5.3. Однако рассмотрение изложенного в данной работе процесса появления корпускулярных свойств у фотона (см. рис.5.) позволяет сделать вполне однозначные выводы:

а) по мере уменьшения длины волны с 10 -4 до 10 -10 {C}{C}{C}{C}{C}см электрические и магнитные поля фотона уплотняются

{C}{C}{C}{C}{C}{C}{C}{C}{C}{C}б) при уплотнении электрического и магнитного полей у «линии раздела» начинается стремительное увеличение «плотности» полей и уже в рентгеновском диапазоне плотность полей соизмерима с плотностью «обычной» частицы.

в) поэтому рентгеновский фотон при взаимодействии с препятствием уже не отражается от препятствия как волна, а начинает отскакивать от него как частица.

5.4. То есть:

а) уже в диапазоне мягкого рентгена электромагнитные поля фотонов настолько уплотнились, что обнаружить у них волновые свойства весьма затруднительно. Цитата: «Чем меньше длина волны фотона, тем труднее обнаружить у него свойства волны и тем сильнее у него проявляются свойства частицы».

б) в жестком рентгеновском и гамма-диапазоне фотоны ведут себя как стопроцентные частицы, и обнаружить у них волновые свойства уже практически невозможно. То есть: рентгеновский и гамма-фотон полностью теряет свойства волны и превращается в стопроцентную частицу. Цитата: «Энергия квантов в рентгеновском и гамма-диапазоне настолько велика, что излучение ведёт себя почти стопроцентно как поток частиц» (с).

в) поэтому в опытах по рассеиванию рентгеновского фотона от поверхности кристалла наблюдалась уже не волна, а обыкновенная частица, которая отскакивала от поверхности кристалла и повторяла строение кристаллической решётки.

5.5. До опытов К.Дэвиссона и К.Джермера уже имелись экспериментальные данные по наблюдению дифракции рентгеновских волн лучей на кристаллических структурах. Поэтому получив схожие результаты в опытах при рассеивании электронов на кристалле никеля, они автоматически приписали электрону волновые свойства. Однако электрон это «твердая» частица, которая имеет реальную массу покоя, габариты и пр. Не электрон-частица ведет себя как фотон-волна, а рентгеновский фотон имеет (и проявляет) все свойства частицы. Не электрон отражается от препятствия как фотон, а рентгеновский фотон отражается от препятствия как частица.

5.6. Поэтому: никаких «волновых свойств» у электрона (и других частиц) не было, нет и быть не может. И не существует никаких предпосылок и тем более возможностей для изменения данной ситуации.

Часть 6. Выводы.

6.1.Электрон и позитрон являются первыми и основообразующими частицами, наличие которых определило появление кварков, протонов, водорода и всех остальных элементов таблицы Менделеева.

6.2. Исторически, одну частицу назвали электроном и присвоили ей знак минус (материя), а другую назвали позитроном и присвоили ей знак плюс (антиматерия). «Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря» (с).

6.3. Электрон может появиться (появиться = родится) только в паре с позитроном (электрон позитронная пара). Появление в Природе хотя бы одного «непарного» (одиночного) электрона или позитрона является нарушением закона сохранения заряда, общей электронейтральности материи и технически невозможно.

6.4. Образование электрон-позитронной пары в кулоновском поле заряженной частицы происходит после разделения элементарных квантов фотона в продольном направлении на две составляющие части: отрицательную - из которой формируется частица-минус (электрон) и положительную - из которой формируется частица-плюс (позитрон). Разделение электронейтрального фотона в продольном направлении на две абсолютно равные по массе, но разные по зарядам (и магнитным полям) части - это естественное свойство фотона, вытекающее из законов сохранения заряда и др. Наличие «внутри» электрона даже ничтожных количеств «частичек-плюс», а «внутри» позитрона - «частичек-минус» - исключается. Также исключается наличие внутри электрона и протона электронейтральных «частичек» (обрезков, кусочков, обрывков и т.д.) материнского фотона.

6.5. По неизвестным причинам абсолютно все электроны и позитроны рождаются эталонными «максимально-минимальными» частицами (т.е. они не могут быть больше и не может быть меньше по массе, заряду, габаритам и другим характеристикам). Образование из электромагнитных фотонов каких-либо более мелких или более крупных частиц-плюс (позитронов) и частиц-минус (электронов) - исключается.

6.6. Внутреннее строение электрона однозначно предопределено последовательностью его появления: электрон формируется как двухкомпонентная частица, которая на 50% является уплотнённым электрическим полем-минус (электрическим монополем-минус), и на 50% - уплотнённым магнитным полем (магнитным монополем- N). Эти два монополя могут рассматриваться как разнозарядные частицы, между которыми возникают силы взаимного притяжения (сцепления).

6.7. Магнитные монополи существуют, но не в свободном виде, а только как составные части электрона и позитрона. При этом магнитный монополь-(N) является неотъемлемой частью электрона, а магнитный монополь-(S) является неотъемлемой частью позитрона. Наличие магнитной составляющей «внутри» электрона обязательно, поскольку только магнитный монополь-(N) может образовать с однозарядным электрическим монополем-минус прочнейшую (и невиданную по силе) связь.

6.8. Электроны и позитроны обладают наибольшей стабильностью и являются частицами, распад которыхтеоретически и практически невозможен. Они являются неделимыми (по заряду и массе), то есть: самопроизвольное (или принудительное) разделение электрона или позитрона на несколько калиброванных или «разнокалиберных» частей - исключается.

6.9. Электрон вечен и он не может «исчезнуть» до тех пор, пока не встретится с другой частицей, имеющей равные по величине, но противоположные по знаку электрический и магнитный заряды (позитрон).

6.10. Поскольку из электромагнитных волн могут появиться только две эталонные (калиброванные) частицы: электрон и позитрон, то на их основе могут появиться только эталонные кварки, протоны и нейтроны. Поэтому вся видимая (барионная) материя нашей и всех других вселенных состоит из одинаковых химических элементов (таблица Менделеева) и везде действуют единые физические константы и фундаментальные законы, аналогичные «нашим» законам. Появление в любой точке бесконечного пространства «других» элементарных частиц и «других» химических элементов - исключается.

6.11. Вся видимая материя нашей Вселенной образовалась из фотонов (предположительно СВЧ-диапазона) по единственно возможной схеме: фотон → электрон-позитронная пара → дробные частицы → кварки, глюон → протон (водород). Поэтому вся «твёрдая» материя нашей Вселенной (включая Homo sapiens’ов) является уплотнёнными электрическими и магнитными полями фотонов. Других «материй» для её образования в Космосе не было, нет и быть не может.

P.S. Электрон неисчерпаем?

На основе установленных М. Фарадеем законов электролиза ирландский ученый Д. Стоней выдвинул гипотезу о том, что существует элементарный заряд внутри атома. И в 1891 г. этот заряд Стоней предложил назвать электроном. Величину заряда электрона часто обозначают e или .

Законы электролиза еще не являются доказательством существования электрона как элементарного электрического заряда. Так, существовало мнение, о том, что все одновалентные ионы могут иметь разные заряды, а их средняя величина равна заряду электрона. Для доказательства существования в природе элементарного заряда следовало провести измерение зарядов отдельных ионов, а не суммарное количество электричества. Кроме того, открытым оставался вопрос о том, что связан ли заряд с какой-либо частицей вещества. Существенный вклад в решении этих вопросов сделали Ж. Перрен и Дж. Томсон. Они исследовали законы движения частиц катодных лучей в электрическом и магнитном полях. Перрен показал, что катодные лучи являются потоком частиц, которые несут отрицательный заряд. Томсон установил, что все данные частицы имеют равные отношения заряда к массе:

Помимо этого Томсон показал, что для разных газов отношение частиц катодных лучей одинаково, и не зависит от материала, из которого изготавливался катод. Отсюда можно было сделать вывод о том, что частицы, которые входят в состав атомов разных элементов, одинаковы. Сам Томсон сделал вывод о том, что атомы являются делимыми. Из атома любого вещества можно вырвать частицы, имеющие отрицательный заряд и очень малую массу. Все данные частицы обладают одинаковой массой и одинаковым зарядом. Такие частицы назвали электронами.

Опыты Милликена и Иоффе

Американский ученый Р. Милликен экспериментально доказал то, что элементарный заряд существует. В своих опытах он измерял скорость движения капель масла в однородном электрическом поле, которое создавалось между двумя электрическими пластинами. Капля заряжалась при столкновении с ионом. Сравнивались скорости движения капли не имеющей заряда и этой же капли после столкновения с ионом (приобретшей заряд). Зная напряженность поля между пластинами, вычислялся заряд капли.

Опыты Милликена повторил А.Ф. Иоффе. Он использовал металлические пылинки вместо капель масла. Изменяя напряженность поля между пластинками, Иоффе добивался равенства силы тяжести и силы Кулона, пылинка при этом оставалась неподвижной. Пылинку освещали ультрафиолетом. Заряд ее при этом изменялся, для уравновешивания силы тяжести приходилось изменять напряженность поля. По полученным величинам напряженности ученый судил об отношении электрических зарядов пылинки.

В опытах Милликена и Иоффе было показано, что заряды пылинок и капель всегда изменялись скачком. Минимальное изменение заряда было равно:

Электрический заряд всякого заряженного тела равен целому числу и кратен заряду электрона. Сейчас существует мнение, что имеются элементарные частицы - кварки, которые обладают дробным зарядом ().

Таким, образом, заряд электрона считают равным:

Примеры решения задач

ПРИМЕР 1

Задание В плоском конденсаторе, расстояние, между пластинами которого равно d, неподвижна капля масла, масса ее m. Какое количество избыточных электронов находится на ней, если разность потенциалов между пластинами составляет U?
Решение В данной задаче рассматривается аналог опыта Милликена. На каплю масла действует две силы, которые взаимно компенсируют друг друга. Это сила тяжести и сила Кулона (рис.1).

Так как поле внутри плоского конденсатора можно считать однородным, имеем:

где E - напряжённость электростатического поля в конденсаторе.

Величину электростатической силы можно найти как:

Поскольку частица находится в равновесии и не движется, то по Второму закону Ньютона получаем:

Из формулы (1.3) выразим заряд частицы:

Зная величину заряда электрона (), число избыточных электронов (создающих заряд капли), найдем как:

Ответ

ПРИМЕР 2

Задание Какое количество электронов потеряла капля после облучения ультрафиолетом (см. Пример 1), если ускорение, с которым она стала двигаться вниз равно a?

Решение Второй закон Ньютона для этого случая запишем как:

Сила кулона изменилась, так как изменился заряд частицы после облучения:

В соответствии со вторым законом Ньютона имеем: